Module 3: A/B Testing II: Design, Measure, Analyze

DAV-6300-1: Experimental Optimization

David Sweet // 20240912

Review: Business Metric (BM)

- Observe business metric, y_i
- Ex: incident of fraud, clicking "like", sharing a video, clicking on an ad, skipping a song, swiping left or right, lingering on a photo, watching a video until the end
- Ex, daily: revenue, active users, shares traded, pnl

Examples?

Review: Law of Large Numbers

• Nobservations, $y_{i'}$ the business metric

- As $N \to \infty, \mu \to E[y]$
- IOW: Our measurement (μ) estimates the "true" business metric

Review: Central Limit Theorem

• As $N \to \infty, \mu \sim \mathcal{N}(E[y], VAR[y]/N)$

- IOW: Measurement (μ) is normally distributed
 - ...even if observations (y_i) are not
 - ...when we have enough observations

normal disitrubtion

Review: Central Limit Theorem

• Observations, $y_{i'}$ may have any distribution:

• still, $\mu \sim \mathcal{N}(E[y], VAR[y]/N)$ for large N

 $\mu = y$ when N = 1

Measurement

• Ex. vector of y_i : [1, 0, 1, 1, 0] – 1 == clicked on ad, 0 == ignored

$$\mu = (1 + 0 + 1 + 1 + 0)/5 = 3/5 = 0.60$$

$$\sigma = \sqrt{\frac{(1 - .60)^2 + (0 - .60)^2 + (1 - .60)^2 + (1 - .60)^2 + (0 - .60)^2}{5}} = 0.49$$

se = 0.49/ $\sqrt{5} \approx 0.22$
y = np.array([1, 0, 1, 1, 0))

mu = y.mean() sigma = y.std() se = sigma / np.sqrt(len(y))

Key Terms

- Replication
- Randomization
- Design, Measure, Analyze
- False positive, False negative

Replication

- Replication decreases uncertainty / variance
 - Increasing N decreases se

inc. N

 $se = \sigma/\sqrt{N}$

One measurement (one experiment) is one dart

Measure A & B

- A/B test compares BM(A) to BM(B)
- Collect N each of $y_{A,i}$ and $y_{B,i}$

$$\delta = \mu_B - \mu_{A'}$$
 se = σ_{δ}/\sqrt{N}

$$\sigma_{\delta} = \sqrt{\sigma_A^2 + \sigma_B^2}$$

Measurement Bias

- Bias is $\mu E[y]$
- Unobservable ... Yet controllable!
- Different types of biases

Measurement: Confounder bias

- Example, credit card fraud detection system, BM = 100% [% lost to fraud]
 - Version A: Old ML model
 - Version B: New ML model
- For simplicity, run A in US and B in EU
 - Only have to change one config file

Measurement: Confounder bias

- But wait, EU has EMV chip card law
 - Measure BM(B) BM(A) > O
- Chip card law is a confounder
- Solution:

A,EU	A,US
B,EU	B,US

• What if there are 2 confounders? 3? 4?

Did you measure BM(B) - BM(A), or BM(EU) - BM(US)?

> Impossible to know all confounders

Measurement: Randomization

- Randomly assign each observation to A or B
 - Ex: Transaction enters system, flip coin: Heads use A, Tails use B
 - Irrespective of US/EU
 - Irrespective of everything

• Random assignment breaks correlations between confounders and assignment to A or B

Measurement: Selection bias

- Usually don't run A/B test on all users, or all transactions, etc. [Risky]
- Select subset to run on
- Selection bias:
 - Pop: 40% EU, 60% US
 - Subset: 10% EU, 90% US
- Fix: Sample uniformly randomly from full population

Measurement bias

Randomization decreases bias

Randomize

One measurement (one experiment) is one dart

Randomization removes biases that you don't even know are there.

Experiment

- Tension:
 - Goal: Keep the cost low => N small
 - Goal: Keep the uncertainty low ==> N large
- Resolution:
 - "Find the smallest N s.t. uncertainty is low enough."

- A/B testing approach to uncertainty
 - Limit false positives
 - Limit false negatives
- False Positive (FP)
 - Measure BM(B) > BM(A), wrong
- False Negative (FN)
 - Measure $BM(B) \leq BM(A)$, wrong

FN: Misses opportunity

FP: Makes system worse

False Positives & Negatives

- Running ad system w/XGBoost model (Version A)
- Version B: Transformer model
- False Positive
 - A/B test says, "Switch to B".
 - In long run, B gets fewer clicks than A.
- False Negative
 - A/B test say, "Stick w/A"
 - B would have gotten more clicks than A

But you'll never know

- Conventional limits:
 - $P{FP} < 0.05$
 - $P\{FN\} < 0.20$
- Notation:
 - $\alpha = 0.05$ $\beta = 0.20$

- "Begin with the end in mind"
- Consider analysis
 - Accept: Switch from A to B
 - Reject: Stick with A, discard B
- Decision criteria?

- CLT: $\delta \sim \mathcal{N}(E[\delta], STD[\delta])$
- Experiment is one draw

Analysis: False Positive

- Accept b/c $\delta > 0$
 - Wrong, $\exp E[\delta] = 0$
- Criterion 1:

 $\delta > 1.645 se$

• Then

 $P\{FP\} < 0.05$

Statistical Significance

- $\delta \sim \mathcal{N}(E[\delta], STD[\delta])$
- Hypothesize: $E[\delta] = 0$
- *se* estimates $STD[\delta]$
- 5% of probability:
 - $\delta > 1.645 se$

Aside: t statistic Student's t

• t statistic:
$$t = \frac{\delta}{se}$$

- The uncertainty in *se* makes *t* follow t distribution
 - Fatter tails than normal distribution
- Criterion 1: $\delta > 1.645se$

t > 1.645

• is called "t test"

Analysis: False Negative

- Measure $\delta < 1.645 se$
- Decision: REJECT
- Really, though:
 - $E[\delta] \ge PS$

Analysis: False Negative

- $E[\delta] \ge PS$
- Simpler: $E[\delta] = PS$
- Limit to $P\{FN\} < 0.20$
 - $PS .84se \ge 1.645se$
 - $PS \ge 2.5se$

$P\{FP\} < 0.05$ $\delta > 1.645se$

$P\{FN\} < 0.20$ $\delta > PS - 0.84se$

- Design criteria driven by acceptance criteria
- $PS 2.5se \ge 0$

$$. se \leq \frac{PS}{2.5}$$

• Recall $se = \sigma_{\delta}/\sqrt{N}$

$$\sigma_{\delta} = \sqrt{\sigma_A^2 + \sigma_B^2}$$

- Don't know $\sigma_{\!\delta}$ before measurement
- Estimate:
 - 1. Existing data for A, $\sigma_B \approx \sigma_A$
 - 2. Pilot study: measure $\sigma_{A'} \sigma_B$
- Call it $\hat{\sigma}_{\!\delta}$

- Decide *PS*
 - Business knowledge
 - Team/manager/customer/market determines goal
 - Somewhat subjective

N too small Random errors (FP, FN) too frequent

N too large Experimentation cost too high

$$\frac{\text{N just large enough}}{\text{P{FP}} < 5\%}$$
$$\text{P{FN}} < 20\%$$
$$N = \left(\frac{2.5\hat{\sigma}_{\delta}}{PS}\right)^{2}$$

Analysis: Practical Significance

- Practical Significance (PS): The smallest improvement you'd care about
- Criterion 2:

 $\delta > PS$

\$1/day more? \$1000/day more!

Analysis: Decision Criteria

• Accept if

Criterion 1: $\delta > 1.645se$

Criterion 2: $\delta > PS$

- Reject otherwise
- Ex, reject if $\delta < 1.645 se$

Design Summary

- Goal: Limits, $P\{FP\} < 0.05 \& P\{FN\} < 0.20$
- Decide PS, Estimate σ_{δ}
- Find N_{r} , number of observations in measurement

$$\left(\frac{2.5\hat{\sigma}_{\delta}}{PS}\right)^2$$

Measurement Summary

- Replicate: N observations, prescribed by design
- Randomize: Each observation; 50% to A, 50% to B

Analysis Summary

• Calculate

$$\delta = \mu_B - \mu_A \quad -- \quad se = \sigma_\delta / \sqrt{N} \quad -- \quad \sigma_\delta = \sqrt{\sigma_A^2 + \sigma_B^2}$$

• Accept B if:

 $\delta > 1.645se \& \delta > PS$

• else reject B. Stick with A.